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Summary

We apply the Box and Cox (1964) power transformation family and robust

alternatives developed by Bickel and Doksum (1981) and Carroll (1980)

to data sets given by John (1978). The robust methods perform quite well

compared to normal theory likelihood methods.
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Introduction

Our basic framework for transformation is the power family (Box and Cox

(1964)); for some unknown X,

(A)
Yi = Yi +  ci 19=I, . . N,

where
-1)/A A $0)(1.1)yWX = (yX _ I)/ (X t 0)

= log Y (X = 0).

Here {xi) are (1 x p) design vectors, B is a (p x 1) regression parameter, o

is a scaling constant, and {ci } are independently and identically distributed

with mean zero and distribution F. Of course, we want F to be the standard

normal distribution function (D, but in general normality, linearity and

heteroscedasticity may not be simultaneously attainable so we think of F as

symmetric and almost normal.

Box and Cox (1964), Andrews (1971), Atkinson (1973), Bickel (unpublished)

and Carroll (1980) have considered the problem of testing whether a given

value Ao results in the model (1.1), i.e., they test

HO: X = Xo. (1.2)

Box and Cox proposed a likelihood ratio test, while Atkinson proposed a

computationally simpler variant; both have good power properties when F

but Carroll (1980) shows they are sensitive to outliers and have highly inflated

test levels (Type I errors) when F t 4. The tests proposed by Andrews and

Bickel hold the correct test levels when F $ @ but are not very powerful when

F = 0

Because the normal theory likelihood estimates are very sensitive to

outliers, Bickel and Doksum (1981) and Carroll (1980) introduced robust methods.

Let o be a (usually) convex function, i - be odd and X be an even function.
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For a given X define B(X) and c(X) as the solutions to

=(ri(x))x 0 (1.3)

E~x(ri(X)) = 0

(1.4)

r(X)= (yA - x 1 )/o.

One then minimizes the function

k(X) = Nloga(x) + ZxN((Y ) 
- xiB())/a( )) - (X - 1)ZlogY i . (1.5)

When p(x) = x2/2 = x(x), we obtain the maximum likelihood estimates of the

parameters (X,B,o) when F = P. In general, (1.5) is the likelihood when F has

density proportional to exp(-p(x)), and (1.3) - (1.4) lead to Huber's Proposal 2

(1973) for robust regression. Bickel and Doksum obtain the limiting distri-

butions for the estimates (XB,-), showing that they have better robustness

properties than the normal theory MLE. Other recent references are Carroll

(1981b), (1981c), Carroll and Ruppert (1981), Doksum and Wong (1981) and

Hernandez and Johnson (1981).

In this paper we apply the robust methods to the two data sets given by

John (1978). John (1978) and Carroll (1981a) originally studied these data sets

because both exhibit possible outliers; Carroll's (1981a) reanalysis is based on

robust methods without transformation. In both data sets the responses are

positive so that the simple model (1.1) is easy to apply. We focus primarily

on estimating X and testing whether it is a specified value, i.e., we test (1.2)

for various x

Carroll (1980) proposed testing (1.2) by treating the function Z()) in (1.5)

as if it were a likelihood, rejecting H0: o if

01
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L = 2((x o ) - E(x*)) > c (1.6)

where ca is the appropriate chi-square percentage point. For the choice

=

X o<x'k
(1.7)

k x>k

(v) = 42 (v) - Jq,2(x)(2-.')exp(-x2/2)dx,

he found that such a test was somewhat of a compromise among those previously

proposed; it has good power properties even when F €, but its level varies

and can be higher than desired, although it has an appnximately correct level

at the normal distribution and the problem of the level is not as severe C.s that

for the normal theory likelihood ratio test.

One can study the general test statistic (1.6) by using the asymptotic

theory of Bickel and Doksum (1981), who achieve major simplifications by letting

a - o and N * simultaneously. It turns out that one can prove the following

Result Define x(y) = y(y) - , r i

and
,A
E." - N'lN (ri)

E N I 2 (ri).

Then as N - - and c - o, under the hypothesis H0 : ' the statistic

L* = (E4')(E42)'L (2 ).1

has a chi-square distribution with one degree of freedom.
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Details are given in the appendix. The statistic (1.8) is similar to one given

by Schrader and Hettmansperger (1980). The choice

x(Y) = Yo(y) - 1 (1.9)

is suggested by Bickel and Doksum, and we will use it throughout this paper.

The result is of limited practical interest (see the example in the appendix),

but at least it suggests a plausible choice for x.

2. Applications

In this section we apply the methods we have discussed to two data sets

introduced by John (1978). Following Bickel and Doksum (1981), we set

K(x) = x4(x) - 1 and we use the following three choices of .:

(MLE) v(x) = x

("Huber") -(x) as in (1.7), k = 2.0

("Hampel") (x) = -

= x o-xza : 2.0

= a a<xlb = 3.5

a(c-x)/(c-b) b<x-c = 5.C

: 0 X>C

We include the "Hampel" arpuse the data sets have potential outliers and, as in

Carroll (1980), the influence function of A Is not bounded if k is monotone,

A word of caution about "Hampel" is in order. Because i is not monotone,

convergence difficulties may arise. Hence in maximizing the function (1.5) with

C' = 4, we find the values of B(X) and c(X,) by first solving for the "Huber" and

then doing two iterations of the weighted least squares algorithm with the

"Hampel" 4). In all examples, the function k(X) attained a unique minimum on the

interval (Alf 2.0.
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The first data set is particularly interesting. In the original scale of

the data (X = 1), both John (1978) and Carroll (1981a) conclude that the data

point with respouse Y = 14 is an extreme outlier, but except for this point the

normal linear model fits well. An acceptable analysis would thus estimate X as

somewhere near I. As predicted by the influence function calculations in Carroll

(1980), the "MLE" estimate for X is much more sensitive to the outlier than the

"Huber", which in turn is more sensitive than the "Hampel"; see Table I for

details.

When we treat observation #11 with respouse Y - 14 as an outlier and

replace it by John's suggested Y = 62.33, we obtain the results given in Table

#2. All three methods give essentially the same answer now, and it seems reason-

able to accept Ho: X = 1.0 and to conclude that no transformation is really

necessary. From a mechanical viewpoint, a combination of transformation and

fitting using the "Hampel" 4 seems to give the best overall analysis. However,

the best pratice would be to use all three methods for the most revealinq analysis.

In Table 3 we present estimates of A and the test statistic for Ho: A = 1.0

obtained by varying observation 011. It is interesting to note that "Hampel"

is not insensitive to the changing observation, although we can always conclude

that no transformation is really necessary.

For the second data set, all three methods indicate that logarithms would

be an acceptable transformation (see Carroll (1981b) for a discussion of the

value of moving the MLE of X to an easily interpretable value).

These examples, the empirical work in Carroll (1981a) and substantial

theoretical work as in Huber (1977) all point to the desirability of using robust

methods in transforming and analyzing data, along, of course, with other standard

tools.



Table I

The first data set described by John (1978). The estimation methods are as

described in (1.3) - (1.5), while the test statistic L* is given b

(1.8) - (1.9). These are the originaZ data.

"MLE" ~ "Huber" "Ha eZ"

,* 1.91 1.66 1.02

L*(1.0) 3.3 2.1 0.0

L*(0.5) 8.2 6.7 1.1

L*(O.O) 15.1 13.9 4.4

L*(-.5) 24.2 23.6 9.7

L*(-1.O) 35.1 35.8 16.7

.., '
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Table 2

This is the first data set described by John, except that observation #11

(Y = 14) has been modified to Y 62.33. See Table #1 for more details.

"MLE" "Huber" "Hanpe Z"

1.31 1.30 1.30

L*(1.0) 0.5 0.5 0.5

L*(0.5) 3.3 3.4 3.4

L*(O.O) 8.8 8.8 8.8

L*(-0.5) 16.5 16.2 16.2

L*(-1.0) 26.2 25.3 28.6

Nw0



Table 3

Various values of X* and L*(1.O) for John's (1978) first data set when

observation #11 is varied.

Observation MLE MLE "Huber" "Huber" "Hampe I" "Hampe I"

#11 L*(1.O) L*(1.0) L*(1.0)

14.00 1.91 3.34 1.66 2.10 1.02 .00

18.83 1.77 1.98 1.55 1.28 .70 1.73

23.67 1.58 1.02 1.43 .72 1.20 .20

33.31 1.30 .30 1.28 .28 1.28 .28

43.00 1.30 .35 1.32 .38 1.31 .38

52.67 1.41 .71 1.43 .76 1.43 .76

62.33 1.31 .48 1.30 .50 1.30 .50

- - I '
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Table 4

The second data set given by John (1978). See TabLe #1 for conventions.

"MLE" "Huzber" "HaRcze Z"

* .11 .15 .15

L*(1.0) 21.45 19.69 15.06

L* (0.5) 4.32 3.37 2.25

L* (0.0) .36 .53 .53

L* (-0.5) 9.25 9.08 9.08

L*(-1.0) 25.95 25.51 25.49
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Appendix

Example: Consider regression through the origen with X = 0, o = :

logY i = a X. +
1 i

N 4£ i = 21x i =

ZN2 = N E =4£1xi 1 Ii =4"

If one tests H.: a 0 by the likelihood ratio test (which is just (1.8)

with p(x) = x2/2, X(y) = y2), standard likelihood methods show that when Ho

is true,

L = L* - Zd,

where Z has a chi-square distribution with one degree of freedom and

d = (Ec6 - 4E + 4 + 62(6Ec 4 -8 ) + 84 4)1 1 14

x (7EE 4/3 + 102 + B4 4)'1
14

The constant d = 1 when F = and one can actually transform to a normal

distribution, but in general d # I so that the test L* does not always have

the correct asymptotic level.

Bickel and Doksum (1981) study the asymptotic behavior of (,*,8*,a*) by

letting a - o at a known rate as N - Define

d (X) d2  (X)vi = Tyi i = r i

qi - liV "

V1 dA1 .. .. 2 -
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B2 =(E ')NIENx'x

22 1i i

B = . (E ')N'ENx q = B
12 1 1 i 21

B13 B 31 0

B = - (E')N'E1q2
111

B33 = EE1X(Ej)

Without stating the precise details, it suffices to state that they show that

j as N 0 , - o,

N (,8,a))/a (Al)

-'iNXB 1 W + 0 (1),
1 1 p

where

B = (Bi)

and

Wi : (qiP(E i), x(ci), X(i)).

Bickel and Doksum, Carroll and Ruppert (1980) and Carroll (1981b,c) discuss

the interesting point outside the scope of this paper that (AI) means that S*

is asymptotically normally distributed with mean zero and covariance

(Ep2)SI(E ')2N),

S = N - 1 Xixi +Q, (A2)

and Q is positive semi-definite. This distribution is different from that when

X is known by the factor Q.
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Define ($,a) as the solutions to (1.3) - (1.4) using Xo, i.e., =

- (Xo). Detailed calculations based on (Al) show that when Ho: X0 = 0

is true,

1- PN (a* - 05/0*4o (A3)

N (A * - )/a N(oVar = e), (A4)

where

e = (E4-2)(E )Y'lim [N-1EN -2 ( -_IE N q x.2
L i lii

We are now in a position to state

Theorem A. When H.: X = Xo is true, asymptotically as N - and a - o

the statistic

(E ')(E 2)-I(L + D) (A5)

is distributed as chi-square with one degree of freedom, where

ri = ri(X*)

D = 2N((o - o*)/u*)(N Zri(r1 ) - 1)
A

E = N-IZN r i

Eip2 = N-IZ I2 (ri).

When x is given by (1.7), the term D in (A5) is non-zero and can be of

considerable importance. When X is given by (1.9), D = 0 and we obtain

L* = L**.

Of course when p(x) = x212, ip(x) = x and X(Y) - y2 - 1 we have that

L - 1* - L**, the normal theory likelihood ratio test. The example shows that

the result stated in the body of the paper depends for its validity on the

assumption that a o.

'C t -
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proof of Theren A. The proof is based upon the following Lemma, which is

extremely messy to obtain but only used Taylor expansions.

Lenma A. As N-' we have

L - (D1 + D2 + D3 + D4 + D5 + D ,

where

D= 2N((o - o*)/a*)(N-1ri(X*)P(ri(X*)) -1)

D N((X* - X)/a)2(N'IE(aui() +v 1i(c)) - (N 1Zv x1

D3 = 2((c* - G)/)i(E it(E.) -ri(*) (ri(X*)))

D = - N((a* - G)/o)2

4

D= 2NE 1I4(E )(* - )2

D N(((; - a )/;) 2 - ((a* - 0)/o) 2 )(E '(Ec) + 2Ec l (C)).
1 1 11

Theorem A follows from Lemma A because of (A3) and (A4).
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